An Explanatory Matrix Factorization with User Comments Data

نویسندگان

  • Donghyun Kim
  • Hayong Shin
چکیده

Matrix factorization is one of the crucial algorithms of the Recommendation system. It implies that the relationship between user and contents can be explained by hidden latent variables. However, it is not intuitive to understand the meaning of these hidden latent variables. Therefore, this study suggests a way to learn the meaning from supplementary data such as comments and use in matrix factorization. The data used in this study is user comment data from Naver which is the largest web platform and also the largest Webtoons (Web comics) platform in South Korea. We show that the suggest method which uses the supervised latent variable also fits well with users with the distinct tendency compare to conventional matrix factorization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new approach for building recommender system using non negative matrix factorization method

Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is ​​decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...

متن کامل

A social recommender system based on matrix factorization considering dynamics of user preferences

With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems...

متن کامل

A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem.  At each step of ALS algorithms two convex least square problems should be solved, which causes high com...

متن کامل

Voice-based Age and Gender Recognition using Training Generative Sparse Model

Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...

متن کامل

THE USE OF SEMI INHERITED LU FACTORIZATION OF MATRICES IN INTERPOLATION OF DATA

The polynomial interpolation in one dimensional space R is an important method to approximate the functions. The Lagrange and Newton methods are two well known types of interpolations. In this work, we describe the semi inherited interpolation for approximating the values of a function. In this case, the interpolation matrix has the semi inherited LU factorization.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017